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Abstract

This paper presents the model of computing multidisciplinary and/or

multizonal applications on parallel machines that is being pursued at

NASA Ames Research Center. The model describes execution on a paral-

lel machine with some number of processors, each with local memory, con-

nected by a network. It does not discuss processor rates, size of memory,

network latency, network bandwidth, network connectivity, disk space,

I/O bandwidth or mass storage. It also does not discuss language and

discipline specific algorithm issues. Model rationality and functionality
are presented.
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1 Introduction

The problem domain of particular interest to NASA Ames Research Center is aero-

nautical research and engineering. Some of the disciplines involved in modeling an

aircraft though its flight envelope are fluid dynamics, structural dynamics, thermal

analysis, propulsion, control theory, electromagnetic analysis, and acoustics. All of

the computational aeroscience (CAS) grand challenges of the HPCC program involve
coupling two or more of these disciplines.

In addition, geometrically complex aircraft configurations, often with one or more

components in relative motion with respect to others, require composite mesh method-

ologies for efficient spatial discretization [4]. A multizonal application meshes indi-

vidual components of the configuration separately and forms a composite mesh by

overlapping component meshes. The overlapping meshes interact through data inter-

polation at inter-mesh boundary points [7].

Currently, there are no applications that combine all of the disciplines. However,

several codes exist that combine at least two of these disciplines. Some examples

in the aeronautical domain are fluid-thermal, fluid-structures, fluid-acoustics, and

fluid-electromagnetic. At NASA Ames Research Center, fluid-thermal [12], fluid-

structures [9], and multizonal fluid dynamics [10] codes have been implemented on a

message passing parallel computer, the Intel iPSC/860.

This paper presents the model of computing multidisciplinary and/or multizonal

applications on parallel machines that is being pursued at NASA Ames Research

Center. The model describes execution on a parallel machine with some number

of processors, each with local memory, connected by a network. It does not dis-

cuss processor rates, size of memory, network latency, network bandwidth, network

connectivity, disk space, I/O bandwidth, or mass storage. It also does not discuss

language and discipline specific algorithm issues.

The paper has three sections. Section 2 describes general multidisciplinary prob-

lem characteristics. Section 3 discusses possible solution approaches. Section 4

presents three computational models and their requirements.

2 Problem Characteristics

A multidisciplinary problem is composed of a collection of two or more interacting
disciplines. A given discipline may interact directly with one or more of the other

disciplines. Also, these interactions occur simultaneously across all interdisciplinary

boundaries. Similar remarks apply to component meshes in a multizonal computa-
tion.

A multidisciplinary problem is naturally decomposed into different interacting dis-

ciplines, each of which may model widely different physical phenomena. Therefore,

the equations used to describe the underlying physics (PDEs/ODEs and/or inte-

gral equations) vary between disciplines. As a result, the computational techniques

used for computer simulations may have widely different numerical algorithm char-

acteristics, data structures, and computational requirements. In addition, on parallel

computers with physically distributed memory, the above differences may induce dis-

tinct data partitioning strategies for each discipline. For example, some disciplines



may be modeledusing finite differencediscretization on logically structured meshes
while others may usea finite elementdiscretization on unstructured meshes.Also,
the computational requirements within each discipline may vary dynamically due
to solution adaptive mesh refinement/coarsening,moving boundaries,and evolving
material non-linearities, etc.

3 Solution Approaches

Given a multidisciplinary and/or multizonal problem, what would be the best ap-

proach to solving it on a parallel computer? On a serial computer, the disciplines

and/or component meshes must be processed serially. This is accomplished by having

a doubly nested loop. The outer loop iterates for the appropriate number of time

steps and the inner loop iterates over the disciplines (meshes).

For a parallel computer, the disciplines (meshes) may be executed in parallel or se-

quentially. In the parallel execution mode, each discipline (mesh) may be partitioned

across a different set of processors and computation proceeds in parallel within dis-

ciplines (meshes) and across disciplines (meshes). Both data parallelism and task

parallelism are used. In the sequential execution mode, each discipline (mesh) is

partitioned across all processors and the computation proceeds in parallel within dis-

ciplines (meshes) but sequentially across disciplines _meshes). Only data parallelism
is used.

The decision whether or not to use task parallelism across disciplines (meshes)

is influenced by several factors: memory requirements, memory efficiency, computa-

tional requirements, Amdahl's Law, software engineering issues, and multidisciplinary
coupling issues.

In the discussion below when comparing two approaches, a fixed number of pro-

cessors and a fixed problem size are assumed. A fixed number of processors is a valid

assumption because at any instant, the goal is to use the available resources most

efficiently. A fixed problem size is appropriate because once the relevant physics is

resolved to the desired level of accuracy, further refinement "wastes" computational

resources (memory and CPU cycles).

3.1 Memory Requirements

Memory requirements include the size of the executable and the size of the data.

For a SIMD machine, there is a single copy of the executable and the disciplines

are processed sequentially (data parallelism only). On a distributed memory MIMD

machine, there are generally multiple copies of the executable. If the disciplines are

processed in parallel (task and data parallelism), the set of processors associated

with a discipline only need the executable for that discipline. If the disciplines are

processed sequentially (data parallelism only), each processor needs a copy of the

executable for all disciplines. Depending on the amount of local memory, whether

or not virtual memory is supported, and the parallel I/O bandwidth, this may or

may not be an issue. Processor utilization degrades with the number of processes

contending for I/O resources. Therefore, most massively parallel processors should

be thought of as physical memory machines and are considered such in this paper.
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The memory required to store data also varies. On a SIMD machine, sincethe
amount of data for eachdiscipline (mesh)vary, somedata structures may be padded
dependingon specific machineor compiler requirements[11]. Also, temporary vari-
ablesare often the sizeof the wholemesh. On a MIMD machine,when a domain is
partitioned acrossmultiple processors,somedata areoften duplicatedto savecommu-
nication costs [2]. Also, temporary variables, typically scalaror vector temporaries,
and small global data structures (i.e., small look up tables) are replicated to avoid
bottlenecks. Buffer spaceis also neededon eachprocessorto buffer messagesin a
messagepassingenvironment.

If the disciplines (meshes)are processedin parallel, eachdiscipline (mesh)hasa
better surfaceto volume ratio for its data implying lessduplicated data. (Assuming
a fixed number of processorsfor the wholeapplication.) Also, the memory required
for temporary variables dependsupon the individual discipline. If the disciplines
(meshes)are processedsequentially,the local memory associatedwith a processor
must be sharedby all disciplines (meshes).This implies a higher surfaceto volume
ratio for eachdiscipline (mesh)sinceeachdiscipline (mesh)is spreadover morepro-
cessors.This in turn impliesmoreduplicateddata to avoidcommunication. Also, the
memory requirement for temporary variablesis dependenton the discipline (mesh)
with the largest requirements.

3.2 Memory Efficiency

Greater parallelism implies more memory is required to solve the application effi-

ciently. Let memory efficiency be defined as

M0
_M -- MN'

where eM is the memory efficiency, M0 is amount of the memory required to fit

the problem on the smallest number of processors (P0), and MN is the amount of

memory used on PN processors (P0 _< PN). Then the claim is that memory efficiency

decreases as the number of processors increase. All that is necessary for this claim

to be true is for a single variable/compiler temporary to be replicated across two or

more processors.

As an example of how memory requirements can grow with increased parallelism,

consider a 32 x 32 × 32 mesh. (Fairly small mesh sizes occur frequently in multizonal

applications.) Form an independent scalar tridiagonal system out of each column.

Then there are 322 independent tridiagonal systems, each of length 32. Compare

the memory requirements to solve the systems on a serial machine, a single vector

processor, and a parallel vector machine. The solution technique will be Gaussian

elimination without pivoting where the input may be overwritten.

On a serial machine, 323 + 3 × 32 words are required, 323 for the right hand side

and 3 x 32 for a single tridiagonal system. The systems are formed and solved one

at a time.

On a single vector processor, 323 + 3 × 322 words are required, 323 for the right

hand side and 3 × 322 to form 32 independent tridiagonal systems. At least 32 of the

systems are formed at a time to allow for vectorization across independent systems.
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On a 32 node parallel vector machine, 4 × 323 words are required, 323 for the right

hand side and 3 x 323 to form 322 independent tridiagonal systems. Thirty two of

the systems are formed at a time on each processor to allow for vectorization.

If the serial machine has a memory efficiency of 1.0, then the single vector proces-

sor and parallel vector machine have memory efficiencies of 0.92 and 0.25 respectively.

3.3 Computational Requirements

Computational requirements for different disciplines and different meshes vary. Also,

mesh sizes may vary widely in multizonal computations yielding very different com-

putational requirements for different meshes. This leads to load balancing issues. For

example, computational requirements in the controls discipline is much smaller than

the computational requirements to compute a fluid flow field.

If disciplines (meshes) are processed in parallel (task and data parallelism) then

the number of processors assigned to each discipline (mesh) can be adjusted to com-

putationally load balance the application. (Subject to memory constraints.)

If disciplines (meshes) are processed sequentially (data parallelism only), for dis-

ciplines (meshes) with small memory requirements and small computational require-

ments, trying to use all available processors may actually slow down the application

due to the decrease in the computation to communication ratio. If the computation

associated with a discipline (mesh) is unable to use all available processors, then some

processors will be idle during that phase of the computation.

Hockney and Jesshope [6] discuss trade offs in algorithm selection. Which algo-

rithm is "best" depends upon the machine architecture, actual number of processors

being used, and the problem size. An algorithm with more inherent parallelism might

not execute as fast as an algorithm with less inherent parallelism due to an overall

increase in operations.

3.4 Amdahl's Law

Efficiency also varies depending on whether the disciplines (meshes) are processed in

parallel or sequentially. Amdahl's Law says that speedup is bounded by the fraction

of the code that is serial:
N

S<
- (N-1)u+l'

where S is the speedup, N is the number of processors, and u is the fraction of the

code that is serial. Efficiency, e, is defined as

S 1

N (N- 1)u + 1"

Amdahl's Law is relevant since these discussions compare and contrast the processing

of a fixed number of multiple disciplines (meshes).

If the disciplines (meshes) are processed in parallel, assume that the number of

processors assigned to each discipline (mesh), Gi, is such that there is near perfect

load balance across disciplines (meshes). Given the same number of processors (N =

Gi), processing disciplines (meshes) sequentially must have a lower efficiency. Each

5



discipline (mesh)is spreadovermoreprocessorsand Amdahl's Law implies efficiency
decreasesasthe number of processorsincreasesfor a fixed problemsize.

For example,assumethat a multizonal application has two identical sizedmeshes
with the samecomputational loadfor each.Further, assumethat the computationon
eachis 99.9%parallel. Given1000processors,if the meshesareprocessedin parallel
(500 processorsassignedto eachmesh) then the efficiencyis 66.7%. If the meshesare
processedsequentially (1000processorsassignedto eachmesh)then the efficiencyis
50.0%.This meansthat processingthe meshessequentiallywill take33%longerthan
processingthem in parallel.

Other sourcesof inefficiencyarean increasedcommunicationto computation ratio
and an increasein redundant computations as the percentageof duplicated data
increases.

3.5 Software Engineering

Someof the softwareengineeringissuesare modularity, independence,extensibility,
modifiability, readability, and maintainability. Softwareengineeringmay be thought
of ascomplexity management.Two primary wayshumansdeal with complexity are
divide-and-conquerand abstraction. The trend over the last thirty years in soft-
wareengineeringhasbeentowardsgreater codemodularity and greater information
hiding. Structured programming, top-down design,program modules,abstract data
structures,object orientedprogrammingareall examplesof this trend. They encour-
agethe partitioning of problemsinto simpler pieces,interfacesto bedefined,and the
implementationdetails to behidden behind the interfaces.

3.6 Multidiseiplinary Coupling

Three principal methodsfor coupling multiple disciplinesareglobal explicit integra-
tion, global implicit integration, and partitioned analysis [5]. Global explicit inte-
gration appliesan explicit time integration algorithm to the global set of equations.
However,stability is a concernand the time step must be chosenbasedon the disci-
pline with the stiffest requirements.

If aglobal implicit couplingschemeis used,the problemcanbeexpressedin block
matrix form wherethe main diagonalblocks representthe individual disciplinesand
the off-diagonalblocksrepresentthe couplingbetweenthe disciplines.Then the whole
systemcan be solvedas a large singlematrix. However,in many instances,it may
not bepossibleto directly coupletwo disciplines. This is dueto difficulties associated
with the explicit evaluation of off-diagonalblocks. For example,it would be difficult
to directly couplea particle simulation of a rarefied gas to the structural and ther-
mal analysisof the body overwhich it flows. Even if all off-diagonalcoupling terms
can be evaluatedexplicitly, direct inversion of sucha large sparsematrix would be
prohibitively expensivein terms of both memoryand CPU time for problemsof any
consequenceto the aeronauticscommunity. As a result, it is necessary to resort to

some form of iterative solution approach based on the concept of sub-structuring or

partitioned analysis. A natural form of sub-structuring across discipline boundaries

would be inevitable due to widely different numerical characteristics across disci-



plines. A monolithic iterative solver is unlikely to be able to cope with all the diverse

disciplines in an efficient manner.

In partitioned analysis, the effect of off-diagonal blocks are represented as forcing

functions on the right hand side. The computation of these forcing terms would

induce inter-disciplinary communication. Partitioned analysis leads to block iterative

methods (block Jacobi, block Gauss-Seidel, etc.). Also, with partitioned analysis, it

is easier to extend the application to include new disciplines. However, robust and

efficient multidisciplinary and/or multizonal coupling techniques is an active area of
research.

Park and Felippa [8] list many of the problems associated with global implicit

coupling and the advantages of partitioned analysis. From a software engineering

viewpoint, the list of disadvantages of direct coupling and advantages of partitioned

analysis could be said about monolithic programming versus modular programming

respectively.

4 Computational Models

Given the above considerations (memory requirements, computational requirements,

Amdahl's Law, software engineering, and multidisciplinary and/or multizonal cou-

pling) the most "natural" approach to implementing a'multidisciplinary and/or mul-

tizonal application on parallel processor is partitioned analysis using a MIMD style

of execution across disciplines (meshes). This allows numerical algorithms and pro-

grams pertaining to individual disciplines to be developed and tested independently.

After each program has been validated, an additional module is added to each that

deals with the required interdisciplinary (interzonal) communication.

Several models of computation support the MIMD style of execution across dis-

ciplines. Which one is best depends upon the physical problem, solution algorithm,

hardware resources, and operating system support available. Below we present three

models and describe the functionality that is desired from each.

The discussions assume the following definitions: NP equals the total number of

processors used, a group Gi is the set of processors assigned to a particular discipline,

NG is the total number of groups, and GSi is the number of processors in group Gi.

In all of the models, it is assumed that the user has the option to control the set of

physical processors assigned to a group and the data layout on that set of processors.

4.1 Static Model

In the static model, all resource requirements are known at startup (i.e., NP, NG,

and GSi are all known). Functional requirements are that the number of processors

assigned to each discipline is independent of the other disciplines, a different exe-

cutable may be loaded into each group, each group has its own logical numbering,

global operations such as SUM or MAX apply to the local group, and some mecha-

nism is provided to establish communication between an individual processor in one

group and an individual processor in another group.

The logical numbering within a group, global operations applying only to the local

group, and different executables all support independent development and testing



of disciplines. The independent assignment of processors to disciplines allows the

application to be statically load balanced. Point to point communication between

groups allow coupling information to be passed directly between the processors that
need to know the information.

Groups are neither created nor deleted dynamically. Everything is initialized at

startup and continues until application termination. Currently, there are several

applications [10, 9, 3] using this model at NASA Ames Research Center based on the

intercube communication software developed for the Intel iPSC/860 [1].

There are several problems with the iPSC/860 implementation of the static model.

Debuggers do not work for multiple independent groups of processors. Groups are

restricted to a power-of-two number of processors and only one group may be assigned

to a processor thereby limiting the ability to load balance the computation. Also,

existing batch job submission software, Network Queuing System (NQS), does not
support this style of computation.

4.2 Dynamic Model

In the dynamic model, groups may be created or deleted dynamically. NP and NG

vary dynamically. GS_ is fixed at group creation. The functional requirements are

(1) the number of processors assigned to each discipline is independent of the other

disciplines, (2) a different executable may be loaded into each group, (3) each group

has its own logical numbering, (4) global operations apply to the local group, (5)

mechanisms for group creation and deletion are needed, and (6) some mechanism

to establish communication between an individual processor in one group and an

individual processor in another group.

The reasoning for the functionality is the same as in the static model with the

additional requirements of dynamic creation and deletion of groups. The size of an

individual group is fixed at group creation. If a group needs to increase its size, a

new group may be created and the relevant information copied from the old group.

Then the old group name is reassigned to the new group and the old group deleted.

The create, copy and delete approach to dynamic group size is acceptable because

disciplines often assume a particular data to processor layout. Adding processors to

the current group would also require a data reorganization. Moving to a new set of

processors may ease the process. This form of process migration requires that the

change in location of the group be transmitted to all groups that need to know.

4.3 Hybrid Model

In the hybrid model, the total number of processors used by the application, NP, is

fixed at application startup. However, the number of groups, NG, and their sizes,

GSi, vary at runtime. Functional requirements are (1) the number of processors as-

signed to each discipline is independent of other disciplines, (2) a different executable

may be loaded into each group, (3) each group has its own logical numbering, (4)

global operations apply to the local group, (5) mechanisms for group creation and

deletion are needed, and (6) some mechanism to establish communication between

an individual processor in one group and an individual processor in another group.



Having a fixed number of processorsassignedto the application simplifies some
problemsand createsothers. Keepingthe group information consistentacrossgroups
is simplified becauseit is a boundedproblem and tablesmay bekept on a processor
basisrather than a group basis.However,what happenswhena group is createdand
there are no idle processors?Possiblesolutionsare to either abort the application,
inform the application that it is out of processors,or allow multiple groupsper pro-
cessorand time slice and share local memory (memory slice) acrossgroups. Recall
that parallel processorsare being consideredphysicalmemorymachines.

The most flexible solution is informing the application that it has run out of idle
processorsand let it decide if it wants to memory sliceor abort. If memory slicing
is selected,the usershould havethe option to specifya logical processorlayout and
the set of physical processorsthat are to be memorysliced. This implies the ability
of an application to interrogate the state of any processor.

With memoryslicing, it is also desirableto have group migration as an option.
This is an issuewheresolution adaptive algorithmsare used. Assumethat a region
needsrefinement. Then a new grid with greater refinementcan be placedover the
region. The new grid is treated as a logically separategroup. In other places,the
grid may be coarsened. In those places, groups terminate. As groups terminate,
processorsmay becomeidle while other processorsare memoryslicing. Under these
conditions, the usermay want groupsto migrate to the idle processors.

Oneof the advantagesof the hybrid model is that it couldbesubmitted asa batch
job. The resourcesrequired are fixed and specifiableat application instantiation.

5 Conclusion

Based on memory requirements, memory efficiency, Amdahl's Law, computational

requirements, computational efficiency, software engineering, and multidisciplinary

(multizonal) coupling a computing model that supports a MIMD style of computing
across disciplines is the most natural.

Three computational models were introduced. The static model is currently being

used at NASA Ames for multidisciplinary and multizonal applications. We expect

to move towards the hybrid model in the next year to support solution adaptive
methods.
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